Chemical Composition of Florida Orange Juices and Concentrates

Kermit M. Floyd and Grayson R. Rogers

Authentic samples of Florida orange juices and concentrates were analyzed for ash, K_2O , P_2O_3 , acidity, sugars, amino acids (formol), polyphenolics (UV absorbance), and total chlorine. Samples of oranges and orange juices were collected to correlate as closely as possible with the finished concentrates to determine the effects of concentration on chemical composition. No significant effects of concentration were found in the chemical composition of orange juice concentrates as compared to single strength juice.

Adulteration of orange juice is a continuing problem for food law enforcement and commercial quality control laboratories. Chemical composition values of suspect products are generally compared with values obtained on juices of known origin in order to confirm adulteration.

Evaluation of orange juice often involves comparison of data obtained on fresh orange juice with data obtained on reconstituted concentrates. It is essential, therefore, to know the effects of concentration if data obtained on fresh orange juices and concentrates are to be used interchangeably for direct comparison.

The purpose of the work reported here was to determine the effect of concentration on the chemical composition of reconstituted orange juice. Data are presented on the chemical composition of authentic samples of Florida orange juices and concentrates. These data are not proposed as a means for regulatory agencies to judge juice.

EXPERIMENTAL

Samples and Methods. Samples of juices and concentrates for this study were collected from orange juice processing plants in Florida. These samples represent juice extracted by commercial reamers. Each sample of concentrate was collected to represent as closely as possible samples of fresh oranges and extracted juices being processed at the same time. Freshly extracted juices and finished chilled and heat-treated uices were also collected for comparison.

During May 1965, a limited number of samples were collected from three manufacturers. Each sample consisted of two subdivisions, one of commercially extracted juice and the other of closely correlated concentrate. Concentrates were diluted with distilled water to a soluble solids content of about 11.8% prior to preparation, and the samples were analyzed by methods published in "Official Methods of Analysis." 10th Edition, 1965, as follows: Sample preparation, 20.003 (a); soluble solids by refractometer, 20.016; ash, 20.017; K₂O by flame photometer, 20.025; P₂O₃ (volumetric), 20.031, 20.032; total chlorine, 20.038, 6.065, 6.067 (Volhard); titratable

	Symbols Used in Tables
Symbol	Definition
SSOJ	Single strength orange juice after finishers
SSOJC	Single strength orange juice after chiller
SSOJC + A	Single strength orange juice after chiller in- cluding "add back" ^a
SSOJ – HT	Single strength orange juice, heat-treated in commercial bottles
C - A	Concentrate before "add back"
C + A	Concentrate after "add back"
СС	Commercial pack, finished concentrate in 6- or 9-oz. containers, packed 2-9-66
FOJ	Fresh oranges: juice extracted on hand reamer
	Fruit Variety
1	Pineapple
2	Hamlin
3	Seedling
4	Navel
5	Parson Brown
6	Valencia
7	Unknown

^a "Add back" is a term generally used in the citrus industry and applies to single strength juices and oils added to adjust the soluble solids and flavor of concentrates and juices prior to commercial packaging.

acidity by potentiometric titration to pH 8.4, 20.043; invert sugar before and after inversion (Munson-Walker), 20.069, 29.038 to 29.040; and sucrose by difference, 29.032. Total polyphenolics (UV absorbance) and total amino acids (formol titration) were determined by methods of Vandercook *et al.* (1963). Results of analysis are presented in Table I. Table II presents the same analysis with all results calculated to a common basis of 11.8% soluble solids, for comparison.

In 1966, this study was continued by collection and analysis of more samples. These samples were collected in essentially the same manner as in 1965. Twelve samples with a total of 30 subdivisions were collected during January, February, and March. These samples represent eight orange juice processors in Florida.

The samples were analyzed by the methods previously cited. Results of analysis are presented in Table III.

Food and Drug Administration, 60 Eighth St., N. E., Atlanta, Ga. 30309

Table I. Composition Data on Commercial Florida Orange Juice and Concentrates (Samples Collected during May 1965)

			K _s O.			Acid as	a	7 Invert S	ıgar	Amino Acids (Formol)	Poly-	Total
Product	% Sol- uble Solids	% Ash	Mg. per 100 Grams	K2O, % of Ash	P ₂ O ₅ , Mg. per 100 Ml.	Citric, Mg. per 100 Ml.	Before inver- sion	After inver- sion	Sucrose by dif- ference	Meq. of NaOH per 100 Ml.	lics (UV A. at 325 mμ)	Chlorine, Mg. per 100 Ml.
					SAMPL	e 1, Fruit	VARIETY	6				
SSOJ C – A	13.1 11.8	0.488 0.442	264 248	54 56	40 39	660 598	4.30 3.91	10.22 9.00	5.62 4.84	2.48 2.28	0.934 0.600	4.8 6.0
					Sampl	e 2, Fruit	VARIETY	7				
SSOJ C – A	12.1 11.9	0.427 0.427	248 231	58 54	34 38	845 717	4.41 4.18	9.26 9.18	4.61 4.75	2.43 2.34	0.710 0.661	6.2 5.3
					Sampl	e 3, Fruit	VARIETY	7				
SSOJ C – A	12.5 11.7	0.454 0.454	253 269	56 59	32 39	800 698	4.44 3.98	9.70 8.90	5.09 4.67	2.64 2.42	0.685 0.590	6.0 5.2
					Sampl	e 4, Fruit	VARIETY	6				
SSOJ C – A	13.0 11.7	0.483 0.444	277 248	57 56	31 32	768 602	4.73 3.87	10.16 8.78	5.16 4.66	2.42 2.54	0.765 0.623	3.8 3.7
						Summai	RY					
Min. Max. Av. (8)	11.7 13.1 12.2	0.427 0.488 0.452	231 277 255	54 59 56	31 40 36	598 845 711	3.87 4.73 4.23	8.78 10.22 9.40	4.61 5.62 4.92	2.28 2.64 2.44	0.590 0.934 0.696	3.7 6.2 5.1
$\begin{array}{c} Av. (4) \\ SSOJ \\ C - A \end{array}$	12.7 11.8	0.463 0.442	260 249	56 56	34 37	763 654	4.47 3.98	9.84 8.96	5.12 4.73	2.49 2.40	0.774 0.618	5.2 5.0

Table II. Results of Analyses in Table I Calculated to a Common Dasis of 11.0 $/_0$ Soluble S	Table II.	Results of Analyses in Table 1	[Calculated to a Common	Basis of 11.8% Soluble Soli
---	-----------	--------------------------------	--------------------------	-----------------------------

		K.O			Acid as	7	Invert Sug	ar	Amino Acids (Formol)	Poly	Total
Product	% Ash	Mg. per 100 Grams	K2O, % of Ash	P₂O₅, Mg. per 100 Ml.	Citric, Mg. per 100 Ml.	Before inver- sion	After inver- sion	Sucrose by dif- ference	Meq. of NaOH per 100 Ml.	lics (UV A. at $325 \text{ m}\mu$)	Chlorine, Mg. per 100 Ml.
					SAMPLE 1,	Fruit Var	iety 6				
SSOJ C – A	0.440 0.442	238 248	54 56	36 39	596 598	3.87 3.91	9.21 9.00	5.07 4.84	2.23 2.28	0.841 0.600	4.3 6.0
					SAMPLE 2,	Fruit Var	JETY 7				
SSOJ C – A	0.416 0.420	242 227	58 54	33 37	826 704	4.30 4.11	9.03 9.03	4.50 4.67	2.37 2.30	0.692 0.650	6.0 5.2
					SAMPLE 3,	Fruit Var	iety 7				
SSOJ C – A	0.418 0.457	233 271	56 59	30 39	736 704	4.09 4.01	8.94 8.98	4.69 4.70	2.43 2.44	0.632 0.595	5.5 5.2
					Sample 4,	Fruit Var	іету б				
SSOJ C – A	0.432 0.448	248 250	57 56	27 32	68 <i>5</i> 608	4.23 3.90	9.08 8.85	4.61 4.70	2.16 2.56	0.684 0.628	3.4 3.7
					S	UMMARY					
Min. Max. Av. (8)	0.416 0.457 0.434	227 271 245	54 59 56	27 39 34	596 826 682	3.87 4.30 4.05	8.85 9,21 9.01	4.50 5.07 4.72	2.23 2.56 2.35	0. 595 0.841 0.665	3.4 6.0 4.9
Av. (4) SSOJ C – A	0.426 0.442	240 249	56 56	32 37	711 654	4.12 3.98	9.06 8.96	4.72 4.73	2.30 2.40	0.712 0.618	4.8 5.0

			K.0			Acid as	q	7 Invert Si	ugar	Amino Acids (Formol)	Poly-	Total
Product	% Sol- uble Solids	% Ash	Mg. per 100 Grams	K2O, % of Ash	P ₂ O ₅ , Mg. per 100 Ml.	Citric, Mg. per 100 Ml.	Before inver- sion	After inver- sion	Sucrose by dif- ference	Meq. of NaOH per 100 Ml.	lics (UV A. at $325 \text{ m}\mu$)	Chlorine, Mg. per 100 Ml.
		70		5	SAMPLE 1,	Fruit Vai	RIETIES 1,	2, 3			.,	
SSOJ C – A	9.6 12.2	$\begin{array}{c} 0.384\\ 0.433\end{array}$	215 232	56 54	32 36	704 858	3.34 4.16	7.45 9.31	3.90 4.89	1.64 1.97	0.420 0.510	5.8 4.7
					SAMPLE	2, Fruit	VARIETY 1	l				
SSOJ C – A C + A	10.8 12.0 12.2	0.399 0.467 0.465	224 248 258	56 53 55	40 42 40	794 858 909	3.74 4.00 3.98	8.36 9.05 9.12	4.39 4.80 4.89	1.82 2.00 2.14	0.440 0.473 0.492	7.7 7.2 7.2
					SAMPLE	3, Fruit	Variety 1	l				
SSOJ SSOJC	11.8 12.9	0.416 0.468	223 240	54 51	35 40	890 967	4.02 4.31	8.98 9.97	4.71 5.38	1.91 2.06	0.444 0.520	8.7 6.9
					SAMPLE 4	, Fruit V	ARIETIES 2	, 5				
FOJ SSOJ SSOJC	12.0 10.3	0.412 0.384 0.404	237 211 220	58 55 54	39 27	768 640 717	4.15 3.49	8.80 7.96	4.42 4.25 4.50	2.20 1.53	0.615 0.440 0.452	6.8 5.6
33030	11.0	0.404	220	54	20 Duuna 5	/1/	5.02	0.00	4.50	1.55	0.452	5.0
SSOJ	13.8	0.4 69 0.407	250 218	53 54	32 33	, FRUIT V. 1044 903	5.30 4.32	, 4 11.07 9.14	5.48 4.58	2.02	0.505	5.5
C A	12.5	0.407	210	54	Sin		T. 52	2.14	4.50	1.70	0.550	0.0
SSOJ	12.2	0.409	215	52	34	756	4.47	9.51	4.79	1.96	0.599	9.9
C – A	12.2	0.434	217	50	40	730	4.43	9.45	4.77	1.96	0.595	6.1
					SAMPLE	7, Fruit	VARIETY (5				
SSOJ SSOJC SSOJ	11.5	0.397 0.395	238 227	60 57	39 37	1178 1056	3.81 3.86	8.91 8.72	4.84 4.62	1.83 1.78	0.560 0.520	6.8 4.8
C + A FOJ	10.4 10.6	0.337 0.347	204 199	60 57	31 38	858 1082	3.57 3.73	7.82 8.09	4.04 4.14	1.61 1.51	0.435 0.580	6.6 6.8
					SAMPLE	8, Fruit	VARIETY 1	l				
SSOJ SSOJ – HT	10.6 10.6	0.422 0.403	235 234	56 58	32 33	756 717	3.53 3.76	8.44 8.13	4.66 4.15	1.90 1.74	0.490 0.470	7.3 8.4
					SAMPLE	9, Fruit	VARIETY 1	l				
SSOJ C – A	11.5 12.2	0.373 0.407	218 233	58 57	28 34	775 756	4.00 4.11	9.06 9.49	4.81 5.11	1.69 1.93	0.480 0.493	5.2 4.4
CC	12.9	0.430	246	57	38	858	4.34	9.70	5.09	2.11	0.570	7.2
0001		0.005		S	ample 10,	FRUIT VA	RIETIES 1,	2, 5		2 01	0.665	1.0
C - A	11.6 12.2 11.9	0.385 0.400 0.411	210 222 225	55 55	32 33 35	775 756 762	4.05 4.12 4.11	8.74 9.25 9.35	4.45 4.91 4.98	2.01 1.96 2.06	0.585	4.8 4.9 4.9
	,		220		SAMPLE 11	FRUIT V	ADIETIES 4	. 6	1.70	2.00	0.070	
SSOJ	10.5	0.371	203	55	30	852	3 27	8.00	4 49	1.67	0.525	4.6
SSOJC	11.6	0.414	212	51	35	864	3.63	8.60	4.72	2.01	0.535	5.1
					Sample 12	2, Fruit V	ARIETIES 3	3,6				
SSOJ SSOJC	12.1 12.1	0.411 0.409	206 218	50 53	36 38	948 941	3.80 3.79	8.52 8.36	4.49 4.33	2.18 2.20	0.625 0.625	5.2 5.6
						SUMMAR	Y					
Min. Max. Av. (30)	9.6 13.8 11.6	0.337 0.469 0.409	199 258 225	50 60 55	27 42 35	640 1178 849	3.27 5.30 3.97	7.45 11.07 8.86	3.90 5.48 4.64	1.51 2.20 1.89	0.420 0.625 0.522	4.4 9.9 6.2
SSOJ	11 4	0.400				0.42	2.00	0.00	1.01		0.000	~ · ·
$\begin{array}{c} Av. (12) \\ C - A \end{array}$	11.4	0.402	221	55	33	843	3.90	8.75	4.60	1.85	0.508	6.4
Av. (6)	12.2	0.425	228	54	36	810	4,19	9.40	4.84	1.93	0.531	5.5
SSOJ		SUM	MARY, KESU	LTS CAL	CULATED 7	IO A COMM	10N BASIS	OF 11.8%	SOLUBLE S	SOLIDS		
Av. (12) C – A	11.8	0.416	228	55	34	873	3.99	8.92	4.74	1.90	0.522	6.6
Av. (6)	11.8	0.408	220	54	35	783	4.03	8.92	4.66	1.86	0.510	5.3

Table III. Composition Data on Commercial Florida Orange Juices and Concentrates Collected during January-March 1966

VOL: 17, NO. 5, SEPT.-OCT. 1969 1121

CONCLUSIONS

The results of analysis presented in this paper offer no evidence of any significant effects of concentration on the chemical composition of orange juice concentrates as compared to fresh juices. There is some evidence of lower results for acidity in the concentrates for both 1965 and 1966. However, results are still within the normal ranges for orange juice. Lower results for polyphenolics found in the 1965 concentrates, when compared to single strength juice for this year, were not supported by results in 1966. Even with some loss of polyphenolics, a minimum value well within the normal range for orange juice can still be established.

Analytical data presented here shows the chemical composition of fresh juices (chilled or heat-treated) and reconstituted concentrates to be similar enough so that chemical data may be used interchangeably for comparison.

It must be emphasized, however, that these conclusions apply only to those analyses reported. Loss of orange oils and other volatile constituents during the concentration process are to be expected.

LITERATURE CITED

Association of Official Agricultural Chemists, "Official Methods of Analysis," 10 ed., 1965. Vandercook, C. E., Rolle, L. A., J. Assoc. Offic. Anal. Chemists 46.

359-62 (1963).

Vandercook, C. E., Rolle, L. A., Ikeda, R. M., J. Assoc. Offic. Anal Chemists 46, 353-8 (1963).

Received for review January 21, 1969. Accepted May 5, 1969.